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Open system of interacting fermions: Statistical properties of cross sections and fluctuations
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Statistical properties of cross sections are studied for an open system of interacting fermions. The description
is based on the effective non-Hermitian Hamiltonian that accounts for the existence of open decay channels
preserving the unitarity of the scattering matrix. The intrinsic interaction is modeled by the two-body random
ensemble of variable strength. In particular, the crossover region from isolated to overlapping resonances
accompanied by the effect of the width redistribution creating superradiant and trapped states is studied in
detail. The important observables, such as average cross section, its fluctuations, autocorrelation functions of
the cross section, and scattering matrix, are very sensitive to the coupling of the intrinsic states to the con-
tinuum around the crossover. A detailed comparison is made of our results with standard predictions of
statistical theory of cross sections, such as the Hauser-Feshbach formula for the average cross section and
Ericson theory of fluctuations and correlations of cross sections. Strong deviations are found in the crossover

region, along with the dependence on intrinsic interactions and the degree of chaos inside the system.
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I. INTRODUCTION

Information on properties of quantum mesoscopic sys-
tems comes mostly from various reactions where the system
plays the role of a target. At high density of intrinsic states,
the dynamics of realistic systems of interacting constituents
becomes chaotic. Onset of chaos immensely complicates the
details of the scattering process as reflected in the paradigm
of compound nucleus. At low energies, the long-lived reso-
nance states are exceedingly complex superpositions in the
basis of independent particles. As energy increases, the scat-
tering pattern evolves from the set of narrow isolated reso-
nances to overlapping resonances and strongly fluctuating
cross sections. Since the individual properties of resonances
cannot be predicted, only statistical description is practical
and sensible. The average cross sections are usually de-
scribed according to Hauser-Feshbach [ 1], while the fluctua-
tions and correlations of cross sections are treated in terms of
Ericson theory [2—4].

Standard theory of statistical reactions does not answer
the question of interplay between reactions and internal
structure determined by the character of interactions between
the constituents. Here more detailed considerations are re-
quired based on the generalization of the shell model of
nuclear reactions [5]. Such an extension introduces statistical
assumptions concerning intrinsic dynamics and its coupling
to the continuum [6,7]. To account for specificity of the sys-
tem, one has to go beyond standard random matrix ap-
proaches [8-10] based on the Gaussian orthogonal ensemble
(GOE). The consistent description based on the continuum
shell model [5], as well as more phenomenological ap-
proaches [11-13], indicate the presence of a sharp restruc-
turing of the system when the widths of resonances
become comparable to their energy spacings. This phenom-
enon carries features of a quantum phase transition with the
strength of continuum coupling playing the role of a control
parameter.
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As was clearly observed in the shell model framework
[14], the distribution of resonance widths rapidly changes in
the transitional region in such a way that the number of very
broad resonances equal to the number of open decay chan-
nels absorb the lion’s share of the total width of all overlap-
ping resonances, while the remaining states become very
narrow. The corresponding theory was suggested in [15-17],
where the mechanism of this restructuring was understood to
be associated with the nature of the effective non-Hermitian
Hamiltonian [5] that describes the intrinsic dynamics after
eliminating the channel variables. The factorized structure of
this Hamiltonian, in turn, is dictated by the unitarity of the
scattering matrix [18]. One can compare this phenomenon to
the classical factorized model [19] of a giant resonance,
where the collective strength of many particle-hole states is
shifted in energy and concentrated at a specific combination
of excited states. In spite of formal analogy, physics under
study here is different. The concentration of widths on a few
broad states can be described as collectivization along the
imaginary axis in the complex energy plane. The driving
force of this restructuring is the presence of open decay
channels and interactions of intrinsic states through the con-
tinuum. The intrinsic Hermitian interaction is present as well
and should be fully accounted for; one of the goals of our
current study is to understand the dependence of the con-
tinuum picture on the strength and character of interactions
inside the closed system. The interplay of two collectivities
is an interesting subject [20,21] practically important in re-
lation to the so-called pygmy resonances in loosely bound
systems [22].

The segregation of short-lived broad resonances from
long-lived trapped states was shown to be similar to the su-
perradiance [23] in quantum optics induced by the coupling
of atomic radiators through the common radiation field, an
analog of coherent coupling of many overlapping intrinsic
states through continuum decay channels. Later a general
character of the phenomenon was demonstrated for systems
with GOE intrinsic dynamics and many open channels
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[24,25]. Modern versions of the shell model in continuum
[26,27] are based on the effective Hamiltonian and naturally
reveal the superradiance phenomenon as an important ele-
ment. The transition to this regime should be taken into ac-
count in all cases when a physical system is strongly coupled
to the continuum; see, for example, [28], and references
therein.

The segregation of scales is spectacularly seen in level
and width statistics [16,24,29,30]. Even for GOE intrinsic
dynamics, the probability P(s—0) of very small spacings
between the centroids of resonances does not vanish because
of energy uncertainty of unstable states. The width distribu-
tion reveals the separation of the “cloud” of superradiant
states far from the real energy axis, while the trapped states
are clearly accumulated near the real axis. Some features of
the picture are, however, sensitive to the character and
strength of intrinsic interactions as we have demonstrated
recently [31]. The analysis included the two-body random
ensemble of variable interaction strength in a Fermi system
of shell-model type and the GOE as an extreme limit of
many-body random interaction.

As was understood earlier (see, for example, review [32],
and references therein), the so-called k-body embedded
Gaussian ensembles, EGE(k), with random k-body interac-
tions, in many respects are different from the GOE. In par-
ticular, for the two-body interaction k=2, the spectral fluc-
tuations differ from those predicted by the GOE, although
the nearest level spacing distribution is still close to the
Wigner-Dyson distribution. What is more important, due to
tiny correlations between many-body matrix elements in the
EGE(2), originating from a relatively small number of non-
zero two-body matrix elements, some of the observables can-
not be correctly described with the use of statistical ap-
proaches (see details in [33]).

In the present work, using the same framework as in [31],
we study the interplay between the intrinsic dynamics and
statistical properties of cross sections comparing the results
with those of conventional approaches, namely, Hauser-
Feshbach average cross sections and Ericson fluctuations and
correlations. In particular, we show that the assumption that
fluctuations of the resonance widths are negligible for a large
number of channels is not correct. We also show that the
elastic enhancement factor strongly depends on the degree of
chaoticity inside the system, thus leading to deviations from
the Hauser-Feshbach formula.

II. MODEL
A. Hamiltonian

We consider a system of n interacting fermions on m
mean-field orbitals (single-particle states). A large number,
N=m!/[n!(m—n)!], of intrinsic many-body states |i) com-
prise our Hilbert space. In our simulations we take n=6, m
=12 that provides a sufficiently large dimension N=924. The
states are unstable being coupled to M open decay channels.
The dynamics of the whole system is governed by the effec-
tive non-Hermitian Hamiltonian [5,16,28] given by a sum of
two N X N matrices,
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H=H-~Ww,

M
> %:§¢4. (1)

Here and below the intrinsic many-body states are labeled as
i,j,... and decay channels as a,b,c... . In Eq. (1), H de-
scribes Hermitian internal dynamics that in reality also can
be influenced by the presence of the continuum [26,27,34],
while W is a sum of terms factorized in amplitudes A; cou-
pling intrinsic states |i) to the channels ¢. Under time-
reversal invariance, these amplitudes can be taken as real
quantities so that both H and W are real symmetric matrices.

We model H by the two-body random ensemble (TBRE)
assuming the intrinsic Hamiltonian H in the form H=H,
+V, where H,, describes the mean-field single-particle levels
|v), and V is a random two-body interaction between the
particles [35]. The single-particle energies €, are assumed to
have a Poissonian distribution of spacings, with the mean
level density 1/d,. The interaction V is characterized by
the variance of the two-body random matrix elements,
(Vilsz;Vs,m):vé. With no interaction, vy=0, the many-body
states have also the Poissonian spacing distribution P(s). In
the opposite extreme limit dy=0, corresponding to infinitely
strong interaction N =v/dy— o, the function P(s) is close to
the Wigner-Dyson (WD) distribution typical for a chaotic
system [8]. Following Ref. [35], the critical interaction for
the onset of strong chaos can be estimated as

Ver 2(m—n)

)\CI' =
dy N,

, ()

where Ny=n(m—n)+n(n—1)(m—n)(m-n-1)/4 is the num-
ber of directly coupled many-body states in any row of the
matrix H;;. Thus, we have A~ 1/20, and often we perform
the simulations with the value A=1/30 slightly lower than
Ao In parallel, we also consider the intrinsic Hamiltonian H
belonging to the GOE that corresponds to a many-body in-
teraction, when the matrix elements are Gaussian random
variables, (Hl-zj):l/N for i #j and (Hfj>=2/N for i=j.

The real amplitudes A7 are assumed to be random inde-
pendent Gaussian variables with zero mean and variance

,yC

(AT ) = 5,07

i

3)

The parameters ¥ with dimension of energy characterize the
total coupling of all states to the channel ¢. The normaliza-
tion used in Eq. (3) is convenient if the energy interval ND
covered by decaying states is finite. Here D is the distance
between the many-body states in the middle of the spectrum,
D=1/p(0), where p(E) is the level density, and E=0 corre-
sponds to the center of the spectrum. We neglect a possible
explicit energy dependence of the amplitudes that is impor-
tant near thresholds and is taken into account in realistic
shell-model calculations [27,34]. The ratio 9*/ND character-
izes the degree of overlap of the resonances in the channel c.
We define the corresponding control parameter as
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K = 777;

2ND )

The transitional region corresponds to x“=~1. Varying the
intrinsic interaction and, therefore, the level density p, we
renormalize correspondingly the absolute magnitude of the
widths 7y in order to keep the coupling to continuum given by
Eq. (4) fixed.

B. Scattering matrix

The effective Hamiltonian allows one to study the cross
sections for possible reactions b —a,
o"(E) = |T"(E)|* &)
(our cross sections are dimensionless since we omit the com-
mon factor 7r/k?). In what follows we study both the elastic,
b=a, and inelastic, b # a, cross sections. Ignoring the smooth
potential phases irrelevant for our purposes we express the
scattering amplitude of the reaction 7°¢ in terms of the am-
plitudes A{,

] a
Th(E) = EA(E H)A (6)

2y

Here the denominator contains the total effective Hamil-
tonian (1) including in this way the continuum coupling W to
all orders.

We can also write 7°%(E) in a different way, diagonalizing
the effective non-Hermitian Hamiltonian 7. Its eigenfunc-
tions |r) and (7 form a biorthogonal complete set,

(FH = (AE,. 7)

and its eigenvalues are complex energies,

H|ry=E]|r),

i
—E——T,, 8
&=E~T, (8)

corresponding to the resonances with centroids E, and widths
I',. The decay amplitudes Af-’ are transformed according to

A7= 2 A, A =2 (DA, ©)

and the transition amplitudes are given by

N
TP(E) =, AfE_ (10)

The biorthogonality of the transformation ensures that the
statistical properties (3) of the ensemble of the amplitudes
are preserved,

(ALA) = 6‘”’5"%. (11)

Introducing the matrix in channel space analogous to what
is routinely used in the resonance data analysis,
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1 1
K=—-A
2 E-H

AT, (12)

where the denominator includes only intrinsic dynamics and
A is the NX M matrix of the transition amplitudes A;‘, one
can relate it to the transition amplitude 7 and the scattering
matrix,

b= g iThe, (13)
in the explicitly unitary form
1-iK
= . 14
1+iK (14)

The poles of the K matrix are real eigenvalues E, of the
intrinsic Hermitian Hamiltonian H. The complex eigenvalues
(8) coincide with the poles of the S matrix and, for small
values of vy, determine energies and widths of separated reso-
nances. With an increase of 7, the resonances start to overlap
leading to specific features of the scattering process, which
are of our main interest.

III. AVERAGE SCATTERING MATRIX

The scattering matrix (14) averaged over the ensemble of
decay amplitudes (3) with accuracy of 1/N is given by [16]

1 -i(K)
1+iK)

(8)= (15)
Following Refs. [16,36], we assume, in concordance with the
statistical ansatz (3), that the decay amplitudes and the eigen-
values E, of the intrinsic Hamiltonian are statistically inde-
pendent. This assumption is satisfied for the GOE and Pois-
sonian ensembles, and here we assume that this is also true
for the TBRE.

Since the mean field many-body basis i) and the eigen-
basis |a) of the intrinsic Hermitian Hamiltonian are related
by a real orthogonal transformation, the anti-Hermitian part
W of the effective Hamiltonian in the basis |@) still has a
factorized form in terms of the new amplitudes B¢ ; similarly
to Eq. (11), the correlation function of the amplitudes B co-
incides with that given by Eq. (3). Thus, the average K ma-
trix determined by the statistical properties of the decay am-
plitudes reduces to

2 <BarBa _

s 1
S > ——  (16)

ab
(KHE) =3 N E-E,

The last sum in Eq. (16) is the trace of the intrinsic Green
function 1/(E-H). For energy E inside the spectrum of H
we should understand it as a limiting value, E— E+i0. The
trace of the imaginary part of the Green function determines
the level density p(E)=2,8(E-E,) for the Hamiltonian H,
and

PO 2y

— —imp(E). (17
~ E—E,+i0 2 g, ). 17

The principal value (PV) part is a smooth function of energy
that vanishes in the middle of the spectrum; as a result, in
this vicinity
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(K% = — iﬂ'é“b%p(O) =—i5K", (18)

where «“ is defined by Eq. (4).
The average scattering matrix (15) takes the form

11—k

1+ &Y

()= 8" (19)
which depends only on the continuum coupling parameter .
Note that the dependence on the intrinsic interaction strength
N appears only through the mean level spacing D, as in the
standard shell model [37]. Equation (19) implies that the
transmission coefficient

T%=1- (S, (20)
can be written as
4
T'=—">. 21
(1+ &%)? 1)

The transmission coefficient in the channel a, 7%, is maxi-
mum (equal to 1) at the critical point of this channel, k*=1,
when the average S matrix vanishes. Thus, k=1 determines
the so-called perfect coupling regime. We will study the sta-
tistical properties of cross sections as a function of the intrin-
sic interaction strength N and continuum coupling parameter
K, both below the critical point, k<1, and after the superra-
diance transition has occurred, x> 1.

IV. COMPARING THE ENSEMBLES

The density of states of the GOE ensemble follows the
famous semicircle law, while the density of states of the
TBRE is Gaussian for large enough particle number n, and
orbital number m [8]; its width depends on \. In order to
compare different ensembles, we restrict our statistical analy-
sis to a small energy interval with a constant level density at
the center of the real spectrum of the complex eigenvalues of
‘H. This interval should be small enough in order to neglect
the energy-dependent difference of the density of states
among the ensembles, but large enough with respect to the
widths in order to contain a statistically meaningful number
of resonances.

For a model with a finite resonance number, it is impor-
tant to avoid edge effects (see discussion in [11,38]). The
energy interval subject to statistical analysis should be also at
a distance of at least several widths away from the edges. A
rough estimate [31] goes as follows: for M equivalent chan-
nels, I'/D o M, and the distance from the center to the edges
is ND/2, then ND/2>T'/D that implies M/N<<1/2. This
shows that the ratio of the number of channels to that of
resonances must be small in order for the results to be model
independent. With this choice, the model will be essentially
equivalent to an infinite resonance model with a constant
level density, apart from a narrow interval around the critical
value. For k=1, with an infinite resonance number, the av-
erage widths should logarithmically diverge, in agreement
with the Moldauer-Simonius expression [13]. In our finite
model, the results become model dependent in a narrow in-
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terval near k=1. Our approach is still appropriate for a com-
parison with the predictions of Ericson fluctuation theory
derived for an infinite resonance model with a constant level
density.

The results of numerical simulations presented below re-
fer to the case of N=924 internal states and M equiprobable
channels, k= k. The maximum value of M we considered is
M =25 so that M/N=2 X 1072. For any value of k, we have
used a large number of realizations of the Hamiltonian ma-
trices, with further averaging over energy.

V. ERICSON FLUCTUATIONS

The starting point of the conventional theory [2—4] can be
summarized as follows. The scattering amplitude 7% (E)
=(T “”(E)>+’2}1“b (E) is divided into two parts; an average one,
(T“(E)), and a fluctuating one, 7/°(E), with

(THP(E)) = 0. (22)

Note that in our statistical model we have (7;,.)=0 for in-
elastic channels, while

K

(Tay=-i(1-(8)) ==2i

1+« (23)

for elastic channels.
With statistical independence of poles (resonance ener-

gies) and residues (resonance amplitudes), z, =A% A", we ob-
tain z,=(z,)+ &z,, so that, for any reaction a— b,

(z,) + 0z,

TE)=2 o o

r

(24)

In the regime of overlapping resonances, (I')>D, and as-
suming all widths of the same order, I',~(I"), the average
part can be computed similarly to Eq. (17), substituting the
sum by the integral

m(z,)

P(E)z)dE,
fE—E,+i(F)/2~_l D’ 25)

where a constant level density p(E,)=1/D is assumed.
The average cross section o=|7|? also can be divided into
two contributions,

(o) =(TP)=KT)P +{(Tal. (26)
The two terms in Eq. (26) are interpreted as

(0) =(ogir) + (om), (27)

where the direct reaction cross section {o;,) is determined by
the average scattering amplitude only, while (o) is the fluc-
tuational cross section (also called in the literature the com-
pound nucleus cross section) that is determined by the fluc-
tuational scattering matrix.

For overlapping resonances (I'y> D, the following con-
clusions were derived concerning the scattering amplitude
and the statistical properties of the cross sections.

(A) The average fluctuational cross section [2]. Assuming
that I, = (I") for a large number of channels, i.e., fluctuations
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of the widths around their average value are small,
var(I)/({')><1, the average fluctuational cross section
<0'ﬂ>=<'2}17§k ) can be written as

82, 82,
(op) = E

; : . (28)
“ (E=E, +il2D)(E - E| - il2(T)

where the substitution I',=(I") was used. Now the averaging
over energy is applied.

1
F(E — | dEF(E). 29
FEy= 1 [ ar) 29)
The integration leads to
2i 85z, 82,0
=—22 . 30
ow AE§ E, - E,+iT) (30

Now we assume that dz, are uncorrelated random quantities
. . . . £

with the statistics independent of 7, {8z, 8z,/)= 8,,.(|8z|*). The

absence of correlations between the amplitudes &z, gives

27 (| 82)%) AE
=5 Py G1)
(B) Variance of the cross section, var(o)={c>)—{c)>. The
derivation can be performed under more general assumptions
[39] than those used for the analysis of average cross section.
If the quantities &z,/(E-E,) are independent complex vari-
ables, then 7 is Gaussian distributed; that is, 7=£&+i7, where
both & and 7 are Gaussian random variables with zero mean.
This is due to the fact that for (I'y> D both £ and 7 are the
sums of a large number of random variables. In the conven-
tional theory it is also assumed that & and # have equal
variance.
Then for the fluctuating cross section we have

(o) = Tal*) = (TaTy TTq) = o). (32)
In a more general case when (7) # 0,
var(0) = (o) (2o + (o). (33)

(C) The correlation function of the scattering amplitudes
is defined as

c(€) =(T(E+ T (E)) - KTE)|* =(Ty(E + T (E)).
(34)

Evaluating c(€) under the same assumptions as for the aver-
age cross sections, one obtains,

@)

c(e) = (o) —— -

e+i{I") (33)

(D) The cross section correlation function is defined as
Cle) =(o(E)o(E + €)) - (a(E))*. (36)

Taking into account the Gaussian form of distribution for 7°
and Eq. (35), one obtains that

(a) the normalized autocorrelation function of cross sec-
tions satisfies the relation
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C cle)
(0l -
C(0) |c(0)
(b) the correlation function has a Lorentzian form
C 12
O__r (38)
c0) P+é
where the correlation length [ is equal to the average width,
[=(T). (39)

In the following we compare the predictions (B)—(D) of
the conventional theory of Ericson fluctuations with our nu-
merical results, paying special attention to the dependence on
the intrinsic interaction strength A. As for the part (A), since
there are no predictions for the quantity |5z|> determining the
average fluctuational cross section (31), the comparison will
be done with the Hauser-Feshbach theory widely used in the
literature.

VI. AVERAGE CROSS SECTION

In this section we study how total and partial cross sec-
tions depend on the continuum coupling «, and intrinsic in-
teraction A, paying main attention to the case of large num-
ber of channels M>1. For any value of k we have used
N,=30 realizations of the Hamiltonian matrices. For each
realization we took into account only the interval
[-0.2,0.2] of real energy at the center of the spectrum.

It follows from Eq. (14) that the average total cross sec-
tion defined by the optical theorem

(G =21~ Re(S)) = (40)
1+«

depends only on the average scattering matrix and therefore

is independent of N and M. Since o,=0y, for M=1, the

average elastic cross section is also independent of \ for the

case of one channel. The situation changes as we increase the

number of channels.

In order to analyze the average elastic and inelastic cross
section, we single out the average scattering matrix elements
in the standard form S%=($%)+S8%, where (S%)=&"(s%)
and (Sﬁb>=0. The average inelastic cross section a#b is
given by

(0) = (|2 = (ISE P (41)
The average elastic cross section can be written as
(0™ =1 = (S +(|SF)D. (42)

Following the literature we will call {|S4|?) the fluctuational
cross section, (of’]b ). For M equivalent channels the fluctua-
tional cross section can be expressed with the use of the
elastic enhancement factor,

(o)
(o)

where b # a. Indeed, in the case of equal channels, using the
relation

(43)
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FIG. 1. (Color online) Fluctuational inelastic (upper panel) and
fluctuational elastic (lower panel) cross sections as a function of .
Circles refer to the GOE case, pluses to A=0, crosses to A=1/30,
and squares to A— 0. The solid curves (top-down) correspond to
the HF formula (49) with F=2.5,2.25,2.0 for A=0,1/30, and the
GOE, respectively. The values 2.5 and 2.25 are found numerically
using the definition (43).

O =2 0= (M= 1) + |1 - 5%, (44)
b

we obtain
I-[(s*9p T
F+M-1 F+M-1

(o) = (45)
where T is the transmission coefficient defined in Eq. (21),
and

FT

ay _ ab -
<U?l> <O-ﬂ> F+M_17

a#b. (46)

Since the transmission coefficient 7" does not depend on A,
the only dependence on \ in Egs. (45) and (46) is contained
in the elastic enhancement factor F. The same seems to be
correct even when the channels are nonequivalent, according
to the results of Ref. [40]. Leaving a detailed analysis of the
elastic enhancement factor for a separate study, here we point
out that F' also depends on k. Specifically, with an increase
of k from zero, the value of F decreases, being confined by
the interval between 3 and 2.

For the fluctuational inelastic cross section, with an in-
crease of the number of channels the dependence on the in-
teraction strength N\ disappears [see Fig. 1 (upper panel)].
This is in agreement with the fact that in the limit of large M
we have (0%’)— T/M, independent of \ [see Eq. (45)]. In
contrast, the fluctuational elastic cross section manifests a
clear dependence on \ [see Fig. 1 (lower panel)]. Thus, one
can directly relate the value of the enhancement factor F to
the strength A of interaction between the particles. As one
can see, the more regular is the intrinsic motion, the higher is
the average cross section. For a large number of channels,
the N dependence of the elastic cross section is in agreement
with the estimate, (of") — FT/M [see Eq. (46)].

Now we compare the numerical results with those ob-
tained for the GOE case when the exact expression for cross
sections in the form of a threefold integral can be found in
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Ref. [7]. Since our main interest is in the case of a large
number of channels, below we use the Hauser-Feshbach
(HF) formula derived both for a=b and a # b (for details and
references see Ref. [8]),

7"
(o) =(1+ é“”)2 - =(1+6")

T

Y (47)
Here the last expression corresponds to our case of equiva-
lent channels, 7°=T. As one can see, the HF formula predicts
F=2, independently of the interaction strength between the
particles. This formula was also derived in [6] in the over-
lapping regime for the TBRE with the infinite interaction,
and in [7,41] for the GOE ensemble. For finite number of
channels in the limit 1/M <1, the corrected HF formula was
derived in [6]. For equivalent channels it reads

by (4 b 1( ) L)
<o-f]>_(1+5“)M 1 ) (48)

Our data confirm that for the fluctuational inelastic cross
section the HF formula gives correct results for all values of
N in the case of a large number of channels. The specific case
of a small number of channels, for which the HF is not valid,
will be discussed elsewhere.

On the other hand, for the fluctuational elastic cross sec-
tion, our data show that the HF formula works only in the
GOE case and in the limit A — o [see Fig. 1 (lower panel)].
At finite values of A clear deviations are seen. In order to
describe the data, we modified the HF formula taking into
account that the elastic enhancement factor varies with \,

(oY =1+ &°(F - 1)]%(1 _1\%) (49)

As one can see, this expression gives a satisfactory descrip-
tion of the data, with the numerically computed values of F.
The problem of an analytical dependence of F on the inter-
action strength \ remains open. To shed light on this prob-
lem, we performed a specific study of the elastic cross sec-
tion in dependence on N for fixed value x=0.8 in the
overlapping regime (see Fig. 2). As one see, there is a sharp
decrease of the cross section in the transition from regular to
chaotic intrinsic motion, A = \.. This result is quite instruc-
tive since it shows how the scattering properties are influ-
enced by the onset of chaos in an internal dynamics. The
nontrivial point is that the analytical estimate of A\ was ob-
tained for a closed system, x=0. However, even in the re-
gime of a strong coupling to the continuum, x=0.8, this es-
timate gives a correct value for the interaction strength at
which a drastic change of scattering properties occurs.

VII. FLUCTUATIONS OF WIDTHS
AND RESONANCE AMPLITUDES

Here we discuss the conventional assumption that for a
large number of channels the deviations of the widths from
their average are small, w(I')/(I')>< 1, where w(I') stands
for the variance of widths. Therefore, for analytical estimates
one can set I',=(I") [see Eq. (28)]. It is usually said in jus-
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FIG. 2. (Color online) Fluctuational elastic cross section as a
function of the interaction strength N for M =10 and x=0.8 (con-
nected circles). The horizontal line refers to the GOE value, and the
dashed vertical line shows the critical value A\, for the transition to
chaos in the TBRE [see Eq. (2)].

tification of this assumption [2] that in the overlapping re-
gime the width of a resonance can be presented as a sum of
partial widths, F,:EQ’;F ¢. Assuming that individual partial
widths obey the Porter-Thomas distribution, the total width
is expected to have a x;, distribution, so that w(I')/(I')?
=2/M is small for M> 1. In fact, it is sufficient to accept
that the partial widths are independent random variables;
then w(I') <M and (I') < M, so that w(I')/{I")2cM~".

However, recently we have shown [31] that for large val-
ues of « the distribution of the widths strongly differs from
the XIZW distribution. Our new data in Fig. 3 give more details
concerning this issue. These results were obtained for a large
number N,=100 realizations of the Hamiltonian matrices, in
order to have reliable results.

The data show that as « increases the normalized variance
w(I)/(T')? also increases, remaining very large even for M
=20. Moreover, the deviations from the expected 1/M be-
havior are clearly seen signaling the presence of correlations

et
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FIG. 3. (Color online) Normalized variance of the width as a
function of the number of channels M, for different coupling
strengths x (symbols are the same as in Fig. 1). While for small
coupling k=0.01, the variance decreases with the number of chan-
nels very fast in accordance with the expected x> distribution
(dashed line), for large couplings k=0.5 and 0.9 the behavior is
different from the 1/M dependence. Pluses, crosses, etc. stand for
the same situations as in Fig. 1.
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FIG. 4. (Color online) Numerical data for the normalized vari-
ance of the widths vs « for GOE and M =2 (circles), in comparison
with the result of numerical integration of Eq. (50) (solid curve),
and with Eq. (51) (dashed curve) (see in the text).

in the partial widths. From Fig. 3 one can also understand
how the value of w(I')/{I")? depends on the degree of intrin-
sic chaos determined by the parameter \. Specifically, for
small « there is no dependence on \ and w(I')/(I')* de-
creases as 2/M for all the ensembles, as expected. However,
as « grows, the dependence on \ emerges: the weaker the
intrinsic chaos (and, consequently, the more simple are the
eigenstates) the larger are the width fluctuations.

It is instructive to compare our results for the two-body
interaction model with those analytically obtained for the
GOE. Specifically, for this case in Ref. [25] the width distri-
bution was derived for any number of channels in the limit of
N—o and M fixed. For two channels M =2, one can obtain
close expression for the second moment,

nocof v fld (1-u?
<y>_CJ1 \,"v2_1 _1 M(v+g—2M)(V_M)2’ (50)

where C=1/(2Vg?=1), y=nT'/D, g=(2/T)-1, and T is the
transmission coefficient, so that from Eq. (21) we have g
=(1+x)/2k, or k=g+\g2—1. Note that v+g—2u>0 and
for g=1 we have x=1. The result of numerical integration of
Eq. (50) (together with the expression for the mean width) is
shown in Fig. 4 by the solid curve. The agreement with our
data for the GOE case and M =2 (circles) is excellent except
for the vicinity of k=1. The difference in this region is due
to the finite N effects.
An approximate expression valid for k=1,

wl) ___ 22+m) (m
Ty \20g+1)(g-1)

is shown in Fig. 4 by the dashed curve. From this relation it
is easy to get that the normalized variance diverges at k=1 as

r
fgz) x (1_1—K)2[1n<1 ~ )P (52)

g-1
g+1

2
) -1, (51)

This result is a consequence of the 1/I'> divergence for the
tail of width distribution, and it can be shown that it is inde-
pendent on M.

Coming back to our model of random two-body interac-
tion, the numerical simulations confirm that the above-
mentioned divergence remains for any number of channels
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FIG. 5. Absolute squares of resonance amplitudes |dz,|> versus
the widths I', for the GOE with M=20. As « increases, the corre-

lations between |8z,)> and T, grow.

and for any value of \. Thus, contrary to the traditional be-
lief, the variance of widths does not become small for a large
number of channels.

Finally, we would like to note that, according to our data,
the assumption of the absence of correlations between the
resonance amplitudes 6z, and the widths I', seems to be in-
correct in the transitional region to the strong resonance
overlap. Indeed, the data reported in Fig. 5 demonstrate that
in contrast to the case of weak coupling x=0.001, for a
strong coupling there are systematic correlations between 6z,
and T',. These correlations are increasing with an increase of
the coupling strength «, but this effect is missed in the con-
ventional description.

VIII. STATISTICS OF CROSS SECTIONS
A. Distribution of fluctuational cross sections

According to the standard Ericson theory, the fluctuating
scattering amplitude can be written as Tf]b=77+i§, where 7
and ¢ are Gaussian random variables with zero mean and

equal variances. Since the fluctuating cross section is given
by

on =Tl = 7> + |, (53)

then oy should have a y? distribution with two degrees of
freedom, which is an exponential distribution,

x= 0 (54)

This should be valid both for the elastic and inelastic cross
sections.

In Figs. 6 and 7 we show the distribution of fluctuational
cross sections for the elastic and inelastic cross sections, with
two different numbers of channels, M =10 and M =25. Ana-
lyzing these data, one can draw the following conclusions.
First, for the inelastic cross section the data seem to follow
the predicted exponential distribution. It should be noted,
however, that a more detailed analysis with the help of the y*
test reveals the presence of strong deviations.
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FIG. 6. (Color online) Distribution of the inelastic fluctuational
cross section for the GOE and for the A=0 case, for M=10; 25
number of channels and fixed k=0.9.

The situation with the fluctuational elastic cross section is
different due to strong deviations from the exponential dis-
tribution occurring even for a quite large M=25. The fact
that large deviations from the conventional theory (for finite
values of M) should be expected in the elastic case were
recognized also in Refs. [42,43]. The comparison between
M=10 and M =25 cases indicate that it is natural to assume
that with a further increase of M both the distributions will
converge to the exponential one. It is important to note that
there is a weak dependence on the interaction strength A
between the particles. This is confirmed by a closer inspec-
tion of the data of Fig. 7. Specifically, the data clearly show
that there is a systematic difference for the two limiting cases
of zero and infinitely large values of \. Our results for the
normalized variance (see below), indeed, confirm a presence
of this weak dependence on A.

10000qss;
ELASTIC o GOE
N — Ericson
o= 1000 + A=0
Y
o 100 %
g
10
0 2 4 6 8
10000¢g
N
bi' 1000
S
o> 100
~
10

FIG. 7. (Color online) The same as Fig. 6, but for the elastic
fluctuational cross section. A clear difference from the exponential
distribution is seen in the tails.
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The above data for the distribution of the normalized fluc-
tuational cross section may be treated as a kind of confirma-
tion of the Ericson fluctuation theory. However, it should be
stressed that if we are interested in the fluctuations of non-
normalized cross sections (at least, for elastic cross sections),
one should take into account the dependence on A. Currently
no theory allows one to obtain the corresponding analytical
results, even for the situation where the number of channels
is sufficiently large.

B. Fluctuations

Here we compare our results for the variance of cross
sections with the Ericson fluctuations theory [2], and with
more recent results for the GOE [42,43]. According to the
standard predictions, the variance of fluctuations of both
elastic and inelastic cross sections,

w(o™) ={(a" = (™)), (55)

is directly connected to the average cross sections by Eq.
(33). It is useful to express the variance of the cross sections
in terms of the scattering matrix. In our statistical model for
a#b, (T =i(§°*)=0. Therefore, the variance of the inelas-

tic cross section reads

w(a™) = (o) = (|S§|H>. (56)

For the elastic scattering one can write (7%)=-i(l
—(59)), so that og;,=|1-(S%)|%, and oq=(|S{’|?). Therefore,
for the variance of the elastic cross sections, one obtains

w(0™) = 2N o)
+ (o) = (ISFP* + 2|1 = (S“YX|SE. (57)

The discussed above conventional predictions and our
analysis of the average cross section in Sec. VI imply that the
variances of cross sections depend on the intrinsic interaction
strength N\ through the average cross sections. Our data for a
relatively large number M =10 of channels (see Fig. 8), in-
deed, correspond to this expectation. Since for the inelastic
scattering the average cross section does not depend on the
interaction strength, it is quite expected that the same occurs
for the variance of the inelastic cross section. Our data con-
firm this expectation. On the other hand, the variance of the
elastic cross section reveals a clear dependence on the value
of \. As one can see, this dependence is quite strong in the
region of strongly overlapping resonances for k= 1.

Let us now compare our data with the exact expressions
for the variance of cross sections. To do this, it is convenient
to express this variance in terms of the scattering matrix,

w(0?) = (| SE*y = (|SLRY2 = §(2[(1 - (5%*))(| 4|25
+c.c.] =21 = (SIS P). (58)

Comparing Eq. (58) with the standard predictions [Egs. (56)
and (57)], one can see that they are correct if

PHYSICAL REVIEW E 76, 031119 (2007)

FIG. 8. (Color online) Variance of inelastic (upper panel) and
elastic (lower panel) cross sections [see Eq. (27)] for M=10 as a
function of « for different interaction strengths: the GOE (circles),
A=0 (pluses), A — oo (squares), and A=1/30 (crosses). For the com-
parison the theoretical curve for MT> 1, obtained for the GOE
from Egs. (60) and (61) (solid curve) is also added. Note that the
maximum of w(o?!) is shifted from x=1 due to the presence of
direct processes.

() (|Sset - 2¢s8»* =0,

(i) (SEIsgP=o0. (59)

These properties are consistent with the Gaussian character
of the distribution for the fluctuational scattering matrix.

The analytical expressions for the variance of elastic and
inelastic cross sections were obtained in Refs. [42,43] for the
GOE case, any number of channels and any coupling
strength with the continuum. However, simple expressions
were derived only for MT> 1. Even under such a condition,
the analytical results show deviations from the conventional
assumptions. Specifically, it was found,

() (SFH = 2S5 = (1 + 786 - 4(T* + T°) + 1y

2(T°77)?
(S;+1)* (60)
and
(T
) (Jsepsen = —gsey 10 (e1)

(S, + 1)*

where §,=3T¢, S,=3(T°)?, and r,=(S,+1)/(S;+1).

The theoretical values for the variance of the cross sec-
tions obtained from Egs. (60) and (61) and from the HF
formula, through Eq. (58), are shown in Fig. 8 by the solid
curve. The agreement with the GOE case in the strong cou-
pling regime is good, as expected.

As we can see from Egs. (60) and (61), assumptions of
Eq. (59) are valid for large S;. In particular, it was shown in
[42,43] that the normalized variance of the cross section
w(op)/{oy)?, being equal to one in standard theory, signifi-
cantly differs from unity in the range 10 <MT <20, where
this theory is expected to be valid. It is now instructive to see
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FIG. 9. (Color online) Normalized variance for k=0.9 versus
the number of channels for the elastic and inelastic cross sections:
GOE case (connected circles), A=0 (connected pluses), \—
(squares), and A=1/30 (crosses). The dash-dotted curves are the
expressions (60) and (61), and the theoretical value in the Ericson
theory, w(o)/(o)?=1, is shown as a dashed line.

how the normalized variance of the cross sections depends
on the number of channels (see Fig. 9). According to the
Ericson prediction, the ratio of the variance to the square of
the mean of the cross sections has to be 1 for strongly over-
lapping resonances, in the limit of a large number of chan-
nels. As one can see, the data for the inelastic scattering
roughly confirm this prediction. It is not a surprise that prac-
tically there is no dependence on the strength A of interaction
between the particles. On the other hand, there is a small
systematic difference from the predicted value, that emerges
for all values of N\, as well as for the GOE case. One can
expect that this difference disappears for a much larger num-
ber of channels.

As for the elastic cross section, the difference from the
GOE case is seen for a relatively large number of channels
M=10-20. This demonstrates that the 1/M corrections are
very important for the elastic cross sections. The data clearly
show that for the applicability of the Ericson predictions one
needs to have a very large number of channels, at least larger
than M =25.

Another observation is a weak dependence of the normal-
ized variance on the interaction strength A. This result is in
agreement with the data reported in Fig. 7 for the distribution
of individual values of the cross section, where a systematic
deviation can be seen when comparing the GOE case with
the case of A=0. We would like to stress that the weak A
dependence is in contrast with a strong dependence occur-
ring for the non-normalized variance (see Fig. 8). One can
treat this effect as manifesting that both the variance and the
square of the cross section average depend on A practically
in the same way. Therefore, their ratio turns out to be almost
independent on A. As one can see, although the standard
predictions are not correct for the non-normalized variance,
they are in a good correspondence with the data for the nor-
malized variance.

C. Correlation functions

Here we compare our results for the correlation function
of cross sections and the scattering matrix with the standard
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FIG. 10. (Color online) Average width (I'), and correlation
length [, normalized to the mean level spacing at the center of the
spectra, versus k for M=1 (upper panel) and M =10 (lower panel).
Solid curves show the MS expression (61). Open circles refer to the
GOE case, pluses to A=0, squares to A—0o0, and crosses to \
=1/30, all for the normalized average width. Full triangles stand for
the normalized correlation length at A=1/30. The dashed line
shows the Weisskopf relation (60).

predictions (see Sec. V). The correlation functions for the
cross section and for the scattering matrix were computed
according to Eqgs. (34) and (36) for the elastic and inelastic
cross sections. The correlation lengths for the cross section
l,, and for the scattering matrix /g, are defined as the energy
for which the correlation function is 1/2 of its initial value.
Our results can be summarized as follows.

(A) For large M, we found [,~Ig for any interaction
strength A. On the contrary, for smaller M, our data show
that [<<[,, and this difference grows for the weaker interac-
tion between the particles, \.

(B) For large M, the correlation functions are Lorentzian
for all N\, while for a small number of channels the correla-
tion function is not Lorentzian, in agreement with the results
of [45]. Moreover, for any M, the correlation length is dif-
ferent from the average width, as one can expect due to Eq.
(39), apart from the region of small « (see Fig. 10). For a
large number of channels, the correlation length is deter-
mined instead by the transmission coefficient through the
Weisskopf relation (see [44], and references therein),

I MT M A4k
—- o= (62)

In Fig. 11, it is shown that, for a large number of chan-
nels, the elastic correlation length is in agreement with Eq.
(62) for all values of the interaction strength A. The same
occurs for the inelastic correlation length. Although the com-
parison of the data with the analytical expression can be
done only for a large number of channels, in Figs. 10 and 11
we also show the results for M =1, in order to see the differ-
ence between M=1 and M>1.

The Weisskopf relation (62) has been also derived in Ref.
[6] for small values of the ratio m=M/N, in the overlapping
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FIG. 11. (Color online) Elastic-elastic correlation length of the
cross section at different values of \ as a function of « for M=1 and
M=10; the GOE case (connected circles), A=0 (pluses connected
by a line), N — o (squares), and A=1/30 (crosses). The Weisskopf
relation (62) is shown by the dashed curve.

regime for the TBRE with the infinite interaction, as well as
in Ref. [7] for the GOE ensemble. In [44] the correlation
function for the GOE ensemble was computed also when
m=M/N is not small, and the deviations from Eq. (62) and
from the Lorentzian form of the correlation function were
found. This is not in contrast with our results for the case of
small ratio of m (see discussion in Sec. IV).

The fact that the correlation length is not equal to the
average width was recognized long ago (see Refs. [38,8]).
However, the statements based on the equality (39) still ap-
pear in the literature (see, for example, Ref. [46]). The rela-
tion between the average resonance width and the transmis-
sion coefficient is given by the Moldauer-Simonius (MS)
formula [11,13],

Mln(l—T):—ZTr@. (63)
D

It can be seen from this expression and Eq. (62) that the
equality [=(I") is true only for small T.

IX. CONCLUSIONS

In conclusion, we have studied the statistics of cross sec-
tions for a fermion system coupled to open decay channels.
We did not assume that intrinsic dynamics can be modeled
by the GOE; instead the dependence of the cross sections on
the degree of intrinsic chaoticity was one of the subjects of
the study. For the first time we carefully followed various
signatures of the crossover from isolated to overlapping reso-
nances in dependence on the strength of interparticle inter-
action modeled here by the two-body random ensemble. The
study was performed for the simplest Gaussian ensemble of
decay amplitudes. Even in this limiting case, when these
amplitudes were considered as uncorrelated with the intrinsic
dynamics, we found significant dependence of reaction ob-
servables on the strength of intrinsic interaction. We expect
this dependence to be amplified with realistic interplay of
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decay amplitudes and internal wave functions. Such studies
should be performed in the future.

A detailed comparison has been carried out of our results
with standard predictions of statistical reaction theory. The
average cross section was compared with the Hauser-
Feshbach formula for a large number of channels. In the
inelastic case this description works quite well in the over-
lapping resonance regime for any interaction strength, while
in the elastic case strong deviations have been found if the
intrinsic motion is not fully chaotic.

The study of Ericson fluctuation theory shows that the
assumption that the fluctuations of the resonance widths be-
come negligible for a large number of channels is invalid in
the overlapping regime. We found that the fluctuations of
resonance widths increase with the coupling to the con-
tinuum, and we gave evidence that the relative fluctuation of
the widths (the ratio of the variance to the square of the
average width) diverges at k=1 for any number of channels.
This should imply that for any number of channels the dif-
ferences from the standard theory should increase as « in-
creases.

In order to study the relationship between the variance of
the cross section and its average value, it is necessary to take
into account the dependence of the average cross section on
the intrinsic interaction strength A. Even when this is done,
the standard prediction about the variance of the cross sec-
tion was found to be a good approximation only for a very
large number of channels. For moderate values of M between
10 and 20, where the Ericson prediction could be expected to
be valid, consistent deviations have been demonstrated. In
particular, the distribution of cross sections shows that the
probability of a large value of the cross section, mainly for
the elastic case (or in the presence of direct reactions), can be
well below conventional predictions.

Finally, we have shown that, in agreement with previous
studies, the correlation length differs from the average width
for any number of channels. On the other hand, the Weis-
skopf relation (62) that connects the correlation length of the
cross section to the transmission coefficient, works, for a
large number of channels, at any value of the intrinsic inter-
action strength N. In many situations we have seen that an
increase of N\ in fact suppresses the fluctuations in the con-
tinuum. This can be understood qualitatively as a manifesta-
tion of many-body chaos that makes all internal states uni-
formly mixed [37].

Our results can be applied to any many-fermion system
coupled to the continuum of open decay channels. The natu-
ral applications first of all should cover neutron resonances
in nuclei, where rich statistical material was accumulated but
the transitional region from isolated to overlapping reso-
nances was not studied in detail. The interesting applications
of a similar approach to molecular electronics and electron
tunneling spectroscopy can be found in the recent literature
[47,48]. Other open mesoscopic systems, for example, quan-
tum dots and quantum wires, should be analyzed as well in
the crossover region. It is of special interest that the model
we have studied allows one to relate the Ericson and conduc-
tance fluctuations (see, for example, [49,50]). Open boson
systems in atomic traps also can be an interesting object of
future theoretical and experimental studies.
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